
Parallel Associative Reductions in Halide

Patricia Suriana
Google, USA

psuriana@google.com

Andrew Adams
Google, USA

abadams@google.com

Shoaib Kamil
Adobe, USA

kamil@adobe.com

Abstract
Halide is a domain-specific language for fast image process-
ing that separates pipelines into the algorithm, which defines
what values are computed, and the schedule, which defines
how they are computed. Changes to the schedule are guaran-
teed to not change the results. While Halide supports paral-
lelizing and vectorizing naturally data-parallel operations, it
does not support the same scheduling for reductions. Instead,
the programmer must create data parallelism by manually
factoring reductions into multiple stages. This manipulation
of the algorithm can introduce bugs, impairs readability and
portability, and makes it impossible for automatic scheduling
methods to parallelize reductions.

We describe a new Halide scheduling primitive rfactor
which moves this factoring transformation into the schedule,
as well as a novel synthesis-based technique that takes
serial Halide reductions and synthesizes an equivalent binary
associative reduction operator and its identity. This enables
us to automatically replace the original pipeline stage with a
pair of stages which first compute partial results over slices of
the reduction domain, and then combine them. Our technique
permits parallelization and vectorization of Halide algorithms
which previously required manipulating both the algorithm
and schedule.

1. Introduction
Halide [17] is a domain-specific language designed for fast
image processing and computational photography. Halide
decouples the algorithm, which defines what values are com-
puted, from the schedule, which defines how values are com-
puted. Halide guarantees consistency – an algorithm produces
the same results no matter the schedule. Programmers are thus
free to explore the space of schedules without introducing
correctness bugs, and can vary the schedule per architecture
without producing different results on different platforms.

Data-parallel operations, such as resizing an image, can be
easily parallelized or vectorized in Halide. However, Halide
does not support the same scheduling manipulations on reduc-
tions. To parallelize or vectorize a reduction, the programmer
has to manually factor the reduction into multiple stages to
expose new data parallelism. For example, instead of com-
puting the histogram of an entire image, one might instead

1 Func out;
2 out() = 0;
3 RDom r(0, input.width());
4 out() = out() + input(r.x);

Listing 1. Halide sum reduction over a one-dimensional
vector.

write an algorithm that computes the histogram of each row,
and then adds those partial histograms. This need to rewrite
the algorithm violates the core tenet of Halide: The algorithm
should only specify what is computed. It is the role of the
schedule to specify how. This manipulation of the algorithm
to parallelize reductions is bug-prone and hampers readability
and portability. It is a language wart.

In this work, we present a new Halide scheduling primi-
tive called rfactor, which moves this factoring of a reduc-
tion into the schedule, while maintaining Halide’s consis-
tency guarantees. rfactor takes a Halide serial reduction
(expressed with an unstructured Halide update definition),
and synthesizes the equivalent binary associative reduction
operator and its identity. In some cases this synthesis problem
is trivial. For example, given Halide code that sums a one-
dimensional vector (Listing 1), it is straightforward to deduce
that the binary operator involved is addition, and its identity
is zero. In other cases this synthesis problem is more chal-
lenging. Listing 2 shows Halide code that finds the complex
number with the greatest magnitude and its location within a
two-dimensional array. It is not obvious what the equivalent
associative binary operator is for this algorithm.

During the compilation process, rfactor splits the orig-
inal serial reduction into a pair of stages: The intermediate
stage computes partial results over slices of the domain of the
reduction, and the merge stage combines those partial results.
The intermediate stage is now data parallel over the slices,
which means that it can now be vectorized or parallelized
using Halide’s existing scheduling primitives.

Combined with other Halide scheduling primitives, such
as split, rfactor allows Halide to represent a broad class
of schedules for parallel and vectorized reductions. For
example, rfactor can express several divide-and-conquer
strategies for parallelizing and vectorizing the summation of
a one-dimensional array (see Figure 1).

1 Func out;
2 out() = {0, 0, 0, 0};
3 RDom r(0, input.width(), 0, input.height());
4 Expr real = input(r.x, r.y)[0];
5 Expr imag = input(r.x, r.y)[1];
6 Expr mag = real * real + imag * imag;
7 Expr best_mag = out()[0] * out()[0] +
8 out()[1] * out()[1];
9 Expr c = mag > best_mag;

10 out() = {select(c, real, out()[0]),
11 select(c, imag, out()[1]),
12 select(c, r.x, out()[2]),
13 select(c, r.y, out()[3])};

Listing 2. Halide reduction which finds the complex number
with the greatest magnitude and its location in a two-
dimensional array.

rfactor further separates the algorithm from its schedule
by making it possible to factor reductions using the schedule
alone. In addition to the readability and portability benefits,
this means that tools that automatically generate schedules
[15, 17] are now capable of parallelizing reductions, which
was previously a task outside of their purview.

Our work makes the following contributions:

• We introduce a new Halide scheduling primitive rfactor
which factors a Halide reduction into a pair of reductions:
an intermediate stage that computes partial results over
slices of the reduction domain, and a merge stage that
combines those partial results.

• We describe a method for automatically discovering an
equivalent associative binary reduction operator and its
identity from a serial reduction expressed as an imperative
Halide update.

• We implement a new stage in the Halide compiler that
matches arbitrary reductions with a set of 17,905 frag-
ments that are pre-generated using our synthesis method,
and show that this enables the compiler to effectively trans-
form a large set of reductions into their parallel equiva-
lents.

The paper is structured as follows. Section 2 provides
background on Halide and a discussion of related work. Sec-
tion 3 presents the rfactor scheduling primitive and how it
transforms Halide programs. Section 4 describes the associa-
tive binary reduction operator synthesis technique. Section 5
demonstrates that this technique does indeed produce the ex-
pected performance gains from vectorization and paralleliza-
tion, and Section 6 describes limitations and summarizes this
work.

2. Background & Related Work
Programmers define an algorithm in Halide using a graph of
Halide functions, which each consist of a sequence of stages.
These stages are the unit on which scheduling occurs. Each

r

∑

rx
ry

∑

u
ry

rx

∑ ∑ ∑ ∑

rx
v ry

∑

∑

∑

∑

∑

f.split(r, rx, ry, 4);

f.rfactor(rx, u).vectorize(u);

f.rfactor(ry, v).parallel(v);

1)

2)

3a)

3b)

f() += in(r);

Figure 1. split followed by rfactor used to vectorize
or parallelize a one-dimensional summation. 1) A serial
summation of 11 elements over a one-dimensional domain
r. 2) The split scheduling directive reshapes the domain
into a two-dimensional reduction. The reduction is still
serial. 3a) The rfactor directive creates and returns a new
(orange square) intermediate stage which computes partial
results along each row. The intermediate stage is now data
parallel over its outer loop, which is indexed with the new
pure variable v. The merge stage (blue hexagon) retains
only the serial loop over the reduction variable ry. We
have reassociated the summation. 3b) Alternatively, one
can use rfactor to make the inner loop data parallel. This
can be used to vectorize reductions. The intermediate stage
computes sums of whole vectors, data parallel across the
vector lanes, and then the merge stage sums the lanes of the
vector result. The strategies in 3a and 3b can be combined
to both vectorize and parallelize a summation. Note that 3b
requires the reduction to be commutative as it changes the
order of computation.

1 // First stage
2 for y:
3 for x:
4 blur(x, y) = 0
5 // Second "update" stage
6 for y:
7 for x:
8 for ry:
9 for rx:

10 blur(x, y) += k(rx, ry) * in(x-rx, y-ry);

Listing 3. Pseudocode for convolution. This algorithm
reduces over rx and ry and is data-parallel over x and y.
In the Halide source, rx and ry would be RVars in a two-
dimensional RDom. x and y would be Vars.

stage represents a perfectly-nested loop in which a single
value of the function is computed and stored in the inner-
most loop per iteration. Stages after the first are called update
stages, and are allowed to recursively refer to the function.
Some of the loops are data parallel and are constrained to
be race-condition free by syntactic restrictions. These data-
parallel loops iterate over variables called Vars. The bounds
of these loops are inferred by Halide using interval arith-
metic. Other loops may have user-specified bounds and a
user-specified nesting order, and fewer syntactic restrictions
on their use. These loop variables are known as RVars (for re-
duction variables), which together define a reduction domain
or RDom. RVars are used to express reductions, scattering,
scans, etc.

Each of these loop types, defined by Vars and RVars, can
be manipulated in various ways using Halide’s scheduling
primitives: they can be tiled, unrolled, mutually interchanged,
etc., provided that the nesting order of RVars is respected.
Halide’s scheduling language also specifies how the compu-
tation of producer functions are interleaved with their con-
sumers, in order to optimize for locality. This is done by
selecting a loop level in the loop nest of the consumer at
which to insert the loop nest of the producer. It is expressed
with the scheduling directive compute_at. compute_root
specifies that the producer should be computer entirely out-
side of the loop nest of the consumer.

While Vars are safe to parallelize or vectorize by construc-
tion – Vars represents the naturally data-parallel axes of an
algorithm – RVars can be parallelized or vectorized if and
only if Halide can prove that no race condition exists (we call
such RVars pure). This makes parallelizing or vectorizing
stages that use only RVars difficult. For example, consider
the two-dimensional convolution shown in Listing 3, which is
parallelizable across Vars x and y. Computing the histogram
of an image (see Listing 4) is harder to parallelize since its
update stage only involves RVars.

Although much prior work has explored automatic genera-
tion of parallel associative reductions from a serial reduction,
most work requires that an explicit associative binary re-

1 // First stage
2 for x:
3 hist(x) = 0
4 // Update stage
5 for ry:
6 for rx:
7 hist(input(rx, ry)) += 1

Listing 4. Computing the histogram of an image is hard
to parallelize in Halide, since its update stage would be
expressed with serial RVars.

duction operator is given. One widely-deployed example is
OpenMP [2] which has a first-class parallel reduction con-
struct that takes one of some number of primitive reduction
operators. Cilk [1] additionally supports user-specified re-
duction operators. This approach is not applicable to Halide.
Reductions in Halide are implemented through implicit serial
loops over RVars. The reduction operator is never explicitly
stated. For Halide to support parallel reductions, it needs to
be able to deduce an equivalent binary associative reduction
operator and its identity from a serial reduction expressed as
an imperative Halide update.

LLVM [11] can automatically recognize a small set of
associative reductions for the purposes of auto-vectorization.
However, it has the usual problems associated with auto-
vectorization – small changes to the program can cause auto-
vectorization to fail for reasons mysterious to the programmer,
and only simple loops reliably auto-vectorize. Halide’s philos-
ophy is one of explicit control. Nevertheless, Halide compiles
to LLVM bitcode, and so for simple reductions we will bene-
fit from this auto-vectorization even if the programmer does
not employ rfactor.

Prior work by Morita et al. [14] introduced automatic
generation of divide-and-conquer parallel programs using a
framework based on the third homomorphism theorem and
derivation of weak-right inverse. However, it requires that
programmers specify the leftwards and rightwards forms of
the sequential function. Teo et al. [22] proposed a method
to synthesize parallel divide-and-conquer programs from a
recurrence function (which is similar in form to a Halide serial
reduction) through induction. They first derive two equivalent
pre-parallel forms of the recurrence function by applying
some generalization rules and deduce the intermediate and
merge reduction functions through induction on those two
pre-parallel forms. Although it can be applied to solve some
complex recurrences, such as the product of a list of complex
numbers, the technique is slow, and is unable to deal with
reductions like argmin, which require non-trivial re-ordering
of the chain of conditionals during the induction steps.

Recent work has applied program synthesis, which auto-
matically discovers executable code based on user intent
derived from examples or other constraints, to generate
parallel programs. Smith et al. [20] used program synthe-
sis to automatically generate MapReduce-style distributed

programs from input-output examples. SKETCH [21] and
ROSETTE [23] are two solver-aided programming languages
with support for program synthesis. MSL [24] is a synthesis-
based language for distributed implementations that can de-
rive many details of the distributed implementation from
serial specifications. We tried SKETCH and ROSETTE and
found them too slow to apply directly at compile time.

Superoptimization [6, 13] searches for the shortest or
most optimized way to compute a branch-free sequence
of instructions by exhaustively searching over a space of
possible programs. These rewrites can then be turned into
peephole optimizations in compilers. More recent work has
used stochastic search [16, 19] and program synthesis [12] to
find replacements for larger sequences of instructions. In this
work, we use a combination of enumeration and synthesis; in
addition, though our domain is more restricted, we search for
larger replacements than most superoptimizers.

CHiLL [7] and URUK [5] allow users to apply a series
of high-level transformations to Fortran and C code, freeing
users from needing to hand-rewrite code to implement com-
plicated optimizations. These code transformation systems
use the polyhedral framework [4, 10] to represent loops and
transformations, but do not support reductions. More recent
work [18] adds new language constructs that allow users to
express arbitrary reductions in the polyhedral model, enabling
transformations to optimize such reductions.

3. The rfactor Transformation
Serial reductions in Halide (e.g. summation over an array,
histogram, etc.) are implemented using RVars or RDoms. An
RVar is an implicit serial loop, and an RDom is an ordered list
of RVars specifying a serial loop nest. Since RVars are not
trivially parallelizable or vectorizable, a programmer must
manually factor a reduction into an intermediate function that
performs reduction over distinct slices of the domain, and a
merge function that combines those partial results.

To further complicate matters, it is hard to infer what
binary reduction operator is equivalent to a Halide update
definition, and even then, many binary operators are not
obviously associative (e.g. x+ y+7xy is in fact associative).
We will defer these issues to Section 4, and for now assume
that given a Halide update definition we can deduce the
equivalent associative binary operator and its identity. Note
that some transformations (e.g. factoring the inner loop of a
reduction as in Figure 1-3b) require the binary operators to
be commutative in addition to being associative as they may
change the order of computation.

To remove the burden of factoring a reduction from the
programmer, we introduce a new scheduling primitive called
rfactor. This splits a reduction into a pair of reductions,
which we will call the intermediate function and the merge
function. rfactor takes a list of (RVar, Var) pairs. The
intermediate reduces only over the RVars not mentioned
in the list, and gains the associated Vars as new pure data-

parallel dimensions. The merge then reduces over these
additional dimensions using RVars that are mentioned the
list. The intermediate is thus higher-dimensional than the
original, but both the intermediate and merge do lower-
dimensional reductions than the original. We will specify
the transformation in more detail after looking at several
examples.

As a first example, consider computing the histogram of
an image in Halide:

1 // Algorithm
2 Func hist;
3 Var i;
4 hist(i) = 0;
5 RDom r(0, input.width(), 0, input.height());
6 hist(input(r.x, r.y)) += 1;
7

8 // Schedule
9 hist.compute_root();

The RDom defines an implicit loop nest over r.x and r.y.
Halide will not permit either of these loops to be parallelized,
as that would introduce a race condition on the += operation.
Without the rfactor transformation, a user would need to
rewrite the algorithm to manually factor the histogram:

1 // Algorithm
2 Func intm;
3 Var i, y;
4 intm(i, y) = 0;
5 RDom rx(0, input.width());
6 intm(input(rx, y), y) += 1;
7

8 Func hist;
9 hist(i) = 0;

10 RDom ry(0, input.height());
11 hist(i) += intm(i, ry);
12

13 // Schedule
14 intm.compute_root().update().parallel(y);
15 hist.compute_root().update().vectorize(i, 4);

Above, the programmer introduced an intermediate func-
tion intm that computes the histogram over each row of
the input. This intermediate function is data-parallel over
y, and so it can be parallelized. The original function hist
now merely sums these partial histograms; since hist is
data-parallel over histogram buckets, the programmer has
vectorized it.

Using rfactor, the programmer can produce the same
machine code as the manually-transformed version, using
the simpler algorithm in the original hist implementation.
While the schedule is more complex, recall that it is only
the five lines of the algorithm that determine correctness.
The programmer can freely transform the code to exploit
parallelism without risking introducing a correctness bug:

1 // Algorithm
2 Func hist;
3 Var i;
4 hist(i) = 0;
5 RDom r(0, input.width(), 0, input.height());
6 hist(input(r.x, r.y)) += 1;
7

8 // Schedule
9 Var y;

10 hist.compute_root()
11 Func intm = hist.update().rfactor(r.y, y);
12 intm.compute_root().update().parallel(y);
13 hist.update().vectorize(i, 4);

Reduction domains need not be rectangular. Consider the
function below, which computes the maximum over a circular
domain using RDom::where to restrict the reduction domain
to the points that lie within a circle of radius 10.

1 // Algorithm
2 Func max_val;
3 max_val() = 0;
4 RDom r(0, input.width(), 0, input.height());
5 r.where(r.x*r.x + r.y*r.y <= 100);
6 max_val() = max(max_val(), input(r.x, r.y));
7

8 // Schedule
9 max_val.compute_root();

In this case, manually factoring the reduction requires also
manipulating the predicate associated with the RDom. The
identity for max is the minimum value of the type in question,
so the newly-factored algorithm becomes:

1 // Algorithm
2 Func intm;
3 Var y;
4 intm(y) = input.type().min();
5 RDom rx(0, input.width());
6 rx.where(rx*rx + y*y <= 100);
7 intm(y) = max(intm(y), input(rx, y));
8

9 Func max_val;
10 max_val() = 0;
11 RDom ry(0, input.height());
12 max_val() = max(max_val(), intm(ry));
13

14 // Schedule
15 intm.compute_root().update().parallel(y);
16 max_val.compute_root();

Using rfactor in the schedule, the programmer can
produce the same machine code from the original algorithm:

1 // Algorithm
2 Func max_val;
3 max_val() = 0;
4 RDom r(0, input.width(), 0, input.height());
5 r.where(r.x*r.x + r.y*r.y <= 100);
6 max_val() = max(max_val(), input(r.x, r.y));
7

8 // Schedule
9 Var y;

10 max_val.compute_root();
11 Func intm = max_val.update().rfactor(r.y, y);
12 intm.compute_root().update().parallel(y);

In both of these examples we factored a two-dimensional
reduction into two one-dimensional reductions. In gen-
eral, one can simultaneously factor out any subset of the
dimensions of an N-dimensional reduction. Recall that
low-dimensional reductions can be reshaped into higher-
dimensional ones using split, as in Figure 1.

With these concrete examples in mind, we now specify
the general form of the transformation. Given a list of (RVar,
Var) pairs, rfactor does the following:

1. The associative binary operator equivalent to the reduction
is synthesized (see Section 4).

2. An intermediate function is created (called intm in the
examples above). It is given a pure definition equal to the
identity of the associative operator. The function has the
same pure Vars as the original, plus the Vars specified
in the rfactor call. The intermediate is thus a higher-
dimensional function than the original.

3. The intermediate is given an update definition which is
a copy of the update definition to which rfactor was
applied. The reduction domain for this definition is a copy
of the original reduction domain, minus the RVars being
factored out. It is thus a lower-dimensional reduction than
the original. In all expressions that comprise this update
definition, each RVar being factored out is replaced with
its associated Var, and those Vars also appear as pure
variables on the left-hand-side of the update definition.

4. The original update definition being factored is deleted,
and a new update definition is injected in its place which
reduces over the intermediate using the associative op-
erator. The domain of this reduction is the set of RVars
which were factored out of the intermediate. The update
operates element-wise along any pure dimensions of the
merge stage (which may create yet more data parallelism,
as in the histogram example). Other stages of the original
function (e.g. its pure definition) are left unchanged.

Note that this transformation requires that the associative
operator has an identity. This is not true for all associative
operators, such as 2xy, where x, y ∈ Z.

4. Synthesizing Associative Binary Operators
In the previous section, we described how rfactor trans-
forms a Halide reduction to expose new data parallelism.
Doing so requires synthesizing the associative binary opera-
tor equivalent to the Halide update definition being factored.
In this section we describe how we do this synthesis.

In some cases generating the equivalent associative opera-
tor from an update definition is trivial (e.g. summation). In
other cases it is not, especially when the function reduces onto
multiple values (see the examples in Figure 4). The inverse
problem is easier: Given an associative binary operator, it is
straightforward to generate the Halide update definition that
implements reduction by it. Therefore, if there were a small

finite set of associative binary operators, we could simply
attempt to match the update definition being factored against
each of them in turn. Halide already includes facilities for
doing regex-like matching of expressions against patterns
with wildcards. Unfortunately, there are more meaningful
associative binary operators than could reasonably be thought
of ahead of time by a compiler author.

An alternative approach is to use program synthesis tech-
niques [21, 23] to synthesize the corresponding associative
reduction at compile-time when the call to rfactor is made.
This is intractably slow, and can increase compile times of
Halide pipelines from seconds to hours.

We use a hybrid of the two approaches, amplified with a
strategy for decomposing each synthesis problem into several
simpler problems. The overall strategy is shown in Figure 2.
Offline, we generate a large finite table of one- and two-
dimensional elementary associative binary operators and their
identities. These are akin to primes – they are the associative
operators which cannot be decomposed into a combination of
simpler associative binary operators. The table also records
whether each operator is commutative. At compile-time,
we decompose the given Halide update definition into a
composition of simpler, lower-dimensional definitions in the
same way, then search the table for the elementary operator
corresponding to each. If consistent matches are found, we
reassemble the results into a composite associative operator
equivalent to the original update definition. In Section 4.1 we
describe how we generate the table, and in Section 4.2 we
describe the decomposition procedure.

4.1 Generating Elementary Operators
We begin with an enumeration of all one- and two-dimensional
tuples of expression trees in two tuple inputs x and y. The op-
erators used to form the inner nodes of the trees are Halide’s
IR nodes (*, +, -, min, max, select, <, etc). We can reject
some classes of uninteresting expressions by excluding them
from the enumeration altogether.

1. We only generate trees which use both x and y.

2. During matching we canonicalize both the pattern and the
input expression using the Halide simplifier and solver;
thus, we can make the enumeration more tractable by only
generating trees that are already in canonical form. The
canonicalization strategy moves all instances of a variable
in an expression tree as far to the left and as far up the tree
as possible. We canonicalize expressions to the following
form: wherever possible, xi is to the left of xi+1 and any
yj is to the left of yj+1. Constants are always on the right.

3. We generate trees using a single generic constant k, rather
than generating trees containing all possible constants as
leaves.

4. We do not generate trees that would be trivially simplified.
For example, we do not generate subexpressions like
max(x0, x0).

Offline

Compile-time

Precomputed
tables of
~10,000

elementary
associative

operators for
each scalar type

Enumerate all binary operators

Discard most non-associative
operators with cheap tests

Z3: prove associativity, deduce
identity, deduce commutativity

Discard non-elementary
operators

Halide update definition

Decompose into subgraphs

Expression matching

Factored update definition

Figure 2. To factor a reduction written as a Halide update
definition, we must first synthesize the equivalent associa-
tive binary operator. We generate a large table of elementary
associative operators offline by enumerating all non-trivial
expression trees and filtering out the ones that are not asso-
ciative operators. At compile-time, we then decompose the
given update definition into simpler definitions and match
each against the table. Combining the results gives us the
equivalent associative binary operator, which we can use to
generate the factored form of the reduction.

After generating a large set of candidate expressions in
this manner, we then subject the expressions to a battery of
tests so that only elementary associative operators remain.
The tests are arranged in increasing order of expense, so that
we can cheaply reject most expressions.

1. For an operator f , we construct the expressions f(f(x, y),
z) and f(x, f(y, z)), and substitute in 100 randomly-
selected values for x, y, z, k. If the two expressions don’t
evaluate to the same thing, the expression is not associa-
tive and can be rejected.

2. We then reject operators which can be decomposed using
the decomposition procedure in Subsection 4.2.

3. Finally, to prove that the expression is associative, we use
the Z3 [3] SMT solver to verify that ∀x, y, z, k f(f(x, y),
z) = f(x, f(y, z)), where k is the constant contained
within the function f . If this proof succeeds, we then ask
Z3 to solve ∀x, k f(id, x) = x to synthesize the identity
id and to decide its commutativity. This commutativity
flag is used to determine the validity of calling rfactor
on the inner loop dimensions of an associative reduction.

1: x+y
....
....
....
....

1: x*y
....
....
....
....

1: min(x,y)
0: min(max(x,k),y)
0: min(max(y,k),x)
0: min(max(k-x,y),x)

....

1: max(x,y)
0: max(min(x,k),y)
0: max(min(y,k),x)
0: max(min(k-x,y),x)

....

Add Mul Min Max

Figure 3. The first 10 elementary associative operators for
32-bit signed integers organized into subtables based on the
root IR node, with simpler expressions located at the top. The
boolean flag on the left indicates the commutativity of the
expression.

In the table of expressions that this produces, x represents
the partial result being reduced onto, and y is a wildcard
which could match any expression. When matching, x must
also appear on the left-hand-side of the update definition. y
may depend on the reduction domain coordinates, but may
not depend on the partial results. The constant k, if it exists,
may match anything which neither depends on the reduction
domain coordinates nor the partial result. For example, the
update definition which separately computes the sum-of-
squares of the even and odd values of some input in could
be written as:

f(in(r)&1) = f(in(r)&1) + in(r)*in(r)
This would match against the pattern x = x + y, where x
matches f(in(r)&1), and y matches in(r)*in(r).

We terminate the enumeration at trees with 8 leaves for
the purposes of the experiments described in this work. Since
some operations are associative in certain scalar types and
not others, we generate different tables for each of Halide’s
scalar types. This takes 1.5 days and generates around 9,000
elementary operators to match against per type. Many of the
operators are simple operators written in a complex way: as
we wish to catch all ways in which a programmer might write
a reduction, we make no attempt to exclude these from the
table. For faster retrieval, the table of each Halide’s scalar type
is split into subtables based on the root IR node (e.g. Add, Mul,
etc.) of the expression. Within each subtable, the operators
are ordered based on the total number of leaves (simple
expressions are located at the top of the table since they are
more likely to be encountered in practice). The operators we
use are Add, Sub, Mul, Min, Max, comparisons, and Select
(Halide’s if-then-else construct). We then linearly scan the
sub-table searching for a matching expression. The first 10
elementary associative operators for signed 32-bit integers
are shown in Listing 3.

As we only consider one- and two-dimensional expres-
sions, there are meaningful primitive operators that we never
discover. For example, we never generate quaternion multi-
plication, since it is an elementary associative operator in 4
tuple elements, where every expression tree has 8 leaf nodes.
We must add any important higher-dimensional primitive
operators to our table manually.

f()[0]

f() = {f()[0] + real(r), f()[1] + imag(r)}

Sum of complex numbers

Product of complex numbers

f() = {f()[0]*real(r) - f()[1]*imag(r),
 f()[1]*real(r) + f()[0]*imag(r)}

f() = {min(f()[0], in(r.x, r.y)),
 select(f()[0] < in(r.x, r.y), f()[1], r.x),
 select(f()[0] < in(r.x, r.y), f()[2], r.y)}

Two-dimensional argmin

f()[1]

f()[0] f()[1]

f()[1]

f()[0]

f()[2]

Figure 4. Dependency graphs of various multi-valued Halide
update definitions. Their subgraph decompositions are shown
in red dotted circle. To find the associative operator equivalent
to a complex Halide update definition, we first decompose
it into subgraphs, then search for each subgraph in our
precomputed table of elementary operators, then recompose
the results into a single multi-valued associative operator.

4.2 Subgraph Decomposition
To describe how we decompose reductions into elementary
operators, we must first discuss how one might compose
elementary reductions. The simplest way to compose two
reductions into a higher-dimensional reduction is to compute
them at the same time, independently. This means that
reductions that are a concatenation of smaller independent
associative reductions are also associative. For example, the
tuple computation:

f() = {f()[0] + in(r), f()[1] * in(r)}
is associative, because it is a composition of the following

two associative reductions:
f0() = f0() + in(r)
f1() = f1() * in(r)
Secondly, if we have an associative operator in which two

tuple elements compute the same value, we can deduplicate
it, reducing the dimensionality by one. The result is still

associative. Therefore, we can prove a reduction is associative
by duplicating one of the elements to break a dependency
and then applying the rule above. Consider the case of two-
dimensional argmin:

1 f() = {
2 min(f()[0], in(r.x, r.y)),
3 select(f()[0] < in(r.x, r.y), f()[1], r.x),
4 select(f()[0] < in(r.x, r.y), f()[2], r.y)}

The three tuple elements are the minimum value, and its
x and y coordinate. All three tuple elements depend on the
minimum value f()[0], so we cannot decompose this into
independent reductions immediately. Let us duplicate the first
tuple element to break the dependency:

1 f() = {
2 min(f()[0], in(r.x, r.y)),
3 select(f()[0] < in(r.x, r.y), f()[1], r.x),
4 min(f()[2], in(r.x, r.y)),
5 select(f()[2] < in(r.x, r.y), f()[3], r.y)}

There are now no dependencies between the first two
elements and the last two. This is a simple concatenation
of two single-variable argmin operations. Single-variable
argmin uses two tuple elements, and is present in our table
of primitive operators, so we recognize two-dimensional
argmin as associative via its decomposition into two one-
dimensional argmin reductions.

In general we consider the directed graph of dependencies
between tuple elements. There is a vertex per tuple element,
and an edge from vertex i to vertex j whenever the definition
of tuple element i refers to tuple element j. If we repeatedly
duplicate vertices (tuple elements) to break dependencies,
in the limit the graph has one connected component per
original tuple element, and that component is the subgraph
containing the vertices reachable from that tuple element.
If each such subgraph is an associative reduction, then the
original reduction is associative. See Figure 4 for several
examples.

After finding the associative operator equivalent to each
subgraph separately, we need to combine the results into a
single multi-valued associative operator equivalent to the en-
tire update definition. If all the subgraphs are associative and
have identities, we need to ensure that for each tuple element
appearing in multiple subgraphs, the binary associative op-
erators deduced via each subgraph are all the same in that
tuple element. If they are consistent, we have succeeded in
finding an equivalent multi-valued associative operator for
the update definition.

In some cases, this procedure over-partitions the graph.
We are searching for an associative operator in x and y.
Only the x is apparent from the Halide update definition
– it is the term that also appears on the left-hand-side. If we
decompose based on cross-dependencies within x alone we
will miss dependencies between tuple elements that exist
only in y. Consider 2x2 matrix multiplication written as a
four-dimensional reduction:

1 f() = {f()[0] * in(r)[0]) + f()[1] * in(r)[2]),
2 f()[0] * in(r)[1]) + f()[1] * in(r)[3]),
3 f()[2] * in(r)[0]) + f()[3] * in(r)[2]),
4 f()[2] * in(r)[1]) + f()[3] * in(r)[3])}

Decomposition based on x alone (i.e. f()[i]) results in
2 subgraphs: one containing the 1st and 2nd tuple elements
and one containing the 3rd and 4th tuple elements. Including
y (i.e. in(r)[i]) tells us that the two subgraphs are indeed
connected. Therefore, if we fail to find a match for the initial
subgraphs (the ones decomposed based on x only), we need
to consider other possible grouping of those initial subgraphs.
The total number of possible grouping is the Bell number
of the initial number of subgraphs. However, we only need
to consider grouping expressions which share a common
subexpression, and we do not need to consider groups of
size greater than the maximum tuple size in our precomputed
table. If we do not find a matching associative operator under
all possible groupings of the initial subgraphs, we terminate
and return an error.

4.3 Algorithm Summary
To summarize, synthesizing an equivalent binary associative
operator from a Halide reduction involves the following steps:

1. Starting from the right-hand-side of the update definition,
replace all references to the partial results being reduced
onto with the symbol xi where 0 ≤ i < n and n is the
number of components in the reduction (i.e. the tuple
size).

2. Canonicalize these expressions. Wherever possible, xi is
to the left of xi+1 and constants to the right.

3. Construct the graph G that represents the dependency
relationships between these terms.

4. Decompose G into an initial set of connected subgraphs
S0.

5. Pick a grouping S from all possible groupings of S0 (see
Section 4.2). For the first iteration, we pick S = S0 as the
grouping.

6. For each subgraph in S, search the appropriate subtable
(based on the data type and root IR node) for a matching
associative operator via wildcard matching. If any of the
subgraphs are not found, return to step 5.

7. Combine the results into a single multi-valued associative
operator equivalent to the entire reduction. If the results
are consistent (see Section 4.2), we have found an equiv-
alent associative operator; otherwise, return to step 5. If
we do not find a matching associative operator after ex-
hausting all possible groupings, we terminate and return
an error.

As we show in the next section, this algorithm is fast to
execute at compile-time, and successfully finds equivalent
binary associative operators for many Halide reductions.

Benchmark Data
Type

Serial
(ms)

rfactor
(ms)

Speed-
up

Maximum int32 5.54 1.22 4.5
2D histogram int32 8.80 1.71 5.1
4D argmin int8 28.52 1.07 26.6
Complex int32 28.53 2.47 11.5
multiplication
Dot product float 25.9 2.66† 9.7
Kitchen sink int32 30.13 1.91 15.7

Table 1. Benchmark results: serial reductions vs. parallel
reductions using rfactor. † To give the numbers some
context, Intel’s MKL [9] takes 2.8ms on the dot product
task.

5. Evaluation
In this section we discuss the speed-ups one can expect by
using rfactor to vectorize and parallelize serial reductions.
These numbers are unsurprising – they are equivalent to the
speed-ups one can attain by manually factoring Halide reduc-
tions. We benchmark the feature using a suite of reductions
of varying complexity1. Some operations, like large matrix
multiplication or convolution, reduce along some axes and
are data parallel along others. rfactor provides little benefit
in these cases, as they are already straight-forward to vec-
torize and parallelize, so we do not include such cases. Our
benchmarks are:

• Maximum: The maximum integer in a list.
• Dot product: The dot product of two vectors.
• 4D argmin: The coordinates of the minimum value in a

four-dimensional volume.
• 2D histogram: A histogram of values present in an 8-bit

image.
• Complex multiplication: The product of a list of complex

numbers.
• Kitchen sink: An 8-tuple-element reduction that simulta-

neously computes the sum, product, minimum, maximum,
argmin, argmax, sum-of-squares, and a count of the num-
ber of even values in a list of integers. This tests exists to
demonstrate we can decompose multi-valued reductions
into primitive ones.

All benchmarks run on an inputs of size 224, which is
a typical number of pixels for an input image to a Halide
program. The input image data types are specified in Table 1.
We run the benchmarks on 8 cores of a Xeon E5-2690. In each
case we use the same Halide algorithm code, and compare
the performance attainable with rfactor to the performance
attainable without it. For each benchmark, we took the
minimum across 10 trials where each trial is the average of

1 https://github.com/halide/rfactor_benchmarks

10 iterations. We measure the execution time of the pipeline,
not including the compilation time. Table 1 shows the results.
Without rfactor, each algorithm would require almost twice
as much algorithm code to reach the same performance (see
Table 2). Most importantly, rfactor provides a much less
error-prone way of factoring a reduction as more of the logic
is in the schedule instead of the algorithm. We also measured
the increase in compile times due to the call to rfactor,
and found it to be consistently under three milliseconds. The
time taken to search the table for a matching operator is
shown in Table 3. The search is fast because the table is split
into subtables by the root IR node type (the largest subtable
has ∼ 2800 entries), and the most common operations are
simple, and so they are close to the top of the tables. For a
non-associative operation (which ultimately returns a compile
error) rfactor must search to the end of the table. This takes
around 1.2 ms.

Benchmarks generally fall into two categories. Either we
benefit from from vectorization and multi-core parallelism,
or we benefit from multi-core parallelism alone. Histogram
and maximum, fall into the second category. The histogram
benchmark cannot be cleanly vectorized, because the bulk of
the work involves scattering to data-dependent locations. The
maximum benchmark does vectorize cleanly, but underneath
Halide LLVM2 auto-vectorizes the reference code without
rfactor, so we only see a speed-up from multi-core paral-
lelism. Dot product, 4D argmin, complex multiplication, and
the kitchen sink test all benefit from parallelism and vectoriza-
tion. Complex multiplication, dot product, and maximum all
hit the memory bandwidth limit, limiting the possible benefit
from parallelism.

Note that we did not add any patterns to the tables manu-
ally; the generated fragments were sufficient for the bench-
marks and the applications in the Halide open source repos-
itory. The generated fragments were also sufficient for the
reductions present in the HDR+ pipeline [8], which is the
largest Halide pipeline of which we are aware. We could,
however, manually add operators to the table if necessary in
the future (for example for quaternion multiplication).

6. Conclusion
In this paper, we have presented a new Halide scheduling
primitive called rfactor, which makes it possible to factor
reductions into multiple stages using the schedule alone,
with all the concomitant correctness guarantees. This permits
parallelization and vectorization of Halide algorithms which
previously required manipulating both the algorithm and
schedule.

Although our framework is able to handle a broad range
of associative reductions, there are several limitations:

• Our precomputed table can only recognize reductions
decomposable into elementary reductions of a fixed max-

2 Trunk LLVM as of Sept 9, 2016

Benchmark Serial
(lines)

rfactor
(lines)

Reduction
(%)

Maximum 9 5 44.4
2D histogram 6 4 33.3
4D argmin 24 13 45.8
Complex 12 7 41.7
multiplication
Dot product 9 5 44.4
Kitchen sink 45 17 62.2

Table 2. Using rfactor reduces the lines of code in the
benchmarks by 45% on average. Only the lines of code
required to define the reduction functions and rfactor calls
are included in the calculation.

Benchmark Search
time (ms)

Total
compilation

time (ms)

Maximum 0.08 127.5
2D histogram 0.09 220.9
4D argmin 0.57 196.2
Complex 0.21 150.4
multiplication
Dot product 0.12 131.2
Kitchen sink 0.55 187.1

Table 3. The time taken to search the table to find a matching
operator is relatively small with respect to the total compila-
tion time.

imum size. The number of expression trees grows very
quickly as a function of the number of leaves and the num-
ber of tuple components, so this approach is never going to
handle operations like multiplying a long sequence of 4x4
matrices, each expressed as a 16-tuple. We would need
more aggressive decomposition tools, or a more directed
runtime search over the space of associative expressions
(as opposed to our exhaustive offline enumeration of it).

• We can only recognize associative operations that Z3 can
prove are associative. This is fortunately a large set. One
failing example in this category is summing a sequence of
128-bit integers, where each 128-bit integer is represented
as a pair of 64-bit integers, and addition is implemented as
elementwise addition plus some logic to handle the carry
bit. We plan to explore additional encodings into Z3 to
increase the operations it is able to prove associative.

• We only recognize reductions where the first stage in the
factorization – the intermediate – has the same form as the
original update definition. The simplest failing example
in this category is repeated subtraction of a list of values
from some initial value. It can be manually factored into
an intermediate that sums slices of the list, and then a

merge stage that does repeated subtraction, but rfactor
cannot do this transformation.

Despite these caveats, our technique can handle all of
the associative reductions we have seen in the wild, which
are mostly summations of one or more tuple components,
minima, maxima, and argmin-like operations which find
some value associated with an extremum.

rfactor lifts the burden of factoring a reduction from
the programmer. This improves readability, as the algorithm,
which is entirely responsible for what values are computed,
is shorter. It also improves portability, as a reduction can
be factored in different ways on different platforms, without
risking producing different results on each platform. However,
we suspect the most important benefit of rfactor is that by
moving this factoring into the schedule alone, rfactor will
make it possible for automatic schedule generation tools to
parallelize and vectorize reductions.

REFERENCES
[1] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leis-

erson, K. H. Randall, and Y. Zhou. Cilk: An efficient
multithreaded runtime system. In Proceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP ’95, pages 207–216, 1995.
ISBN 0-89791-700-6. doi: 10.1145/209936.209958. URL
http://doi.acm.org/10.1145/209936.209958.

[2] L. Dagum and R. Menon. Openmp: An industry-
standard api for shared-memory programming.
IEEE Comput. Sci. Eng., 5(1):46–55, Jan. 1998.
ISSN 1070-9924. doi: 10.1109/99.660313. URL
http://dx.doi.org/10.1109/99.660313.

[3] L. De Moura and N. Bjørner. Z3: An efficient smt
solver. In Proceedings of the Theory and Practice
of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, pages 337–340,
2008. ISBN 3-540-78799-2, 978-3-540-78799-0. URL
http://dl.acm.org/citation.cfm?id=1792734.1792766.

[4] P. Feautrier. Dataflow analysis of array and scalar references.
International Journal of Parallel Programming, 20(1):23–53,
1991.

[5] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello,
M. Sigler, and O. Temam. Semi-automatic composition of loop
transformations for deep parallelism and memory hierarchies.
International Journal of Parallel Programming, 34(3):261–
317, 2006.

[6] T. Granlund and R. Kenner. Eliminating branches using a
superoptimizer and the gnu c compiler. In Proceedings of the
ACM SIGPLAN 1992 Conference on Programming Language
Design and Implementation, PLDI ’92, pages 341–352, 1992.
ISBN 0-89791-475-9. doi: 10.1145/143095.143146. URL
http://doi.acm.org/10.1145/143095.143146.

[7] M. Hall, J. Chame, C. Chen, J. Shin, G. Rudy, and M. M.
Khan. Loop Transformation Recipes for Code Generation and

Auto-Tuning, pages 50–64. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010. ISBN 978-3-642-13374-9.

[8] S. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron,
F. Kainz, J. Chen, and M. Levoy. Burst photography for high
dynamic range and low-light imaging on mobile cameras. ACM
Transactions on Graphics (SIGGRAPH Asia 2016), 2016. URL
http://www.hdrplusdata.org/hdrplus.pdf.

[9] Intel. Mkl. http://software.intel.com/mkl, 2016.

[10] F. Irigoin and R. Triolet. Supernode partitioning. In Sympo-
sium on Principles of Programming Languages (POPL’88),
pages 319–328, San Diego, CA, January 1988. URL
http://ssh.cri.ensmp.fr/classement/doc/A-179.pdf.

[11] C. Lattner and V. Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In Proceedings
of the International Symposium on Code Generation and
Optimization: Feedback-directed and Runtime Optimization,
CGO ’04, pages 75–, 2004. ISBN 0-7695-2102-9. URL
http://dl.acm.org/citation.cfm?id=977395.977673.

[12] N. P. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr.
Provably correct peephole optimizations with alive. In
Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, PLDI ’15, pages 22–32, 2015. ISBN 978-1-
4503-3468-6. doi: 10.1145/2737924.2737965. URL
http://doi.acm.org/10.1145/2737924.2737965.

[13] H. Massalin. Superoptimizer: A look at the smallest pro-
gram. In Proceedings of the Second International Confer-
ence on Architectual Support for Programming Languages
and Operating Systems, ASPLOS II, pages 122–126, 1987.
ISBN 0-8186-0805-6. doi: 10.1145/36206.36194. URL
http://dx.doi.org/10.1145/36206.36194.

[14] K. Morita, A. Morihata, K. Matsuzaki, Z. Hu, and M. Take-
ichi. Automatic inversion generates divide-and-conquer par-
allel programs. In Proceedings of the 28th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, PLDI ’07, pages 146–155, 2007. ISBN
978-1-59593-633-2. doi: 10.1145/1250734.1250752. URL
http://doi.acm.org/10.1145/1250734.1250752.

[15] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley,
and K. Fatahalian. Automatically scheduling halide image
processing pipelines. ACM Trans. Graph., 35(4):83:1–83:11,
July 2016. ISSN 0730-0301. doi: 10.1145/2897824.2925952.
URL http://doi.acm.org/10.1145/2897824.2925952.

[16] P. M. Phothilimthana, A. Thakur, R. Bodik, and D. Dhur-
jati. Scaling up superoptimization. In Proceedings of
the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, ASPLOS ’16, pages 297–310, 2016. ISBN 978-

1-4503-4091-5. doi: 10.1145/2872362.2872387. URL
http://doi.acm.org/10.1145/2872362.2872387.

[17] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe. Halide: A language and compiler for
optimizing parallelism, locality, and recomputation in image
processing pipelines. In Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, PLDI ’13, pages 519–530, 2013. ISBN
978-1-4503-2014-6. doi: 10.1145/2491956.2462176. URL
http://doi.acm.org/10.1145/2491956.2462176.

[18] C. Reddy, M. Kruse, and A. Cohen. Reduction drawing: Lan-
guage constructs and polyhedral compilation for reductions
on gpu. In Proceedings of the 2016 International Confer-
ence on Parallel Architectures and Compilation, PACT ’16,
pages 87–97, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4121-9. doi: 10.1145/2967938.2967950. URL
http://doi.acm.org/10.1145/2967938.2967950.

[19] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superopti-
mization. SIGARCH Comput. Archit. News, 41(1):305–316,
Mar. 2013. ISSN 0163-5964. doi: 10.1145/2490301.2451150.
URL http://doi.acm.org/10.1145/2490301.2451150.

[20] C. Smith and A. Albarghouthi. Mapreduce program syn-
thesis. In Proceedings of the 37th ACM SIGPLAN Con-
ference on Programming Language Design and Implemen-
tation, PLDI ’16, pages 326–340, 2016. ISBN 978-
1-4503-4261-2. doi: 10.1145/2908080.2908102. URL
http://doi.acm.org/10.1145/2908080.2908102.

[21] A. Solar-Lezama. Program Synthesis by Sketching. PhD thesis,
2008. AAI3353225.

[22] Y. M. Teo, W.-N. Chin, and S. H. Tan. Deriving effi-
cient parallel programs for complex recurrences. In Pro-
ceedings of the Second International Symposium on Parallel
Symbolic Computation, PASCO ’97, pages 101–110, 1997.
ISBN 0-89791-951-3. doi: 10.1145/266670.266697. URL
http://doi.acm.org/10.1145/266670.266697.

[23] E. Torlak and R. Bodik. Growing solver-aided languages with
rosette. In Proceedings of the 2013 ACM International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Pro-
gramming & Software, Onward! 2013, pages 135–152, 2013.
ISBN 978-1-4503-2472-4. doi: 10.1145/2509578.2509586.
URL http://doi.acm.org/10.1145/2509578.2509586.

[24] Z. Xu, S. Kamil, and A. Solar-Lezama. Msl: A synthesis en-
abled language for distributed implementations. In Proceedings
of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC ’14, pages 311–322,
2014. ISBN 978-1-4799-5500-8. doi: 10.1109/SC.2014.31.
URL http://dx.doi.org/10.1109/SC.2014.31.

