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Fig. 1. Using trees of averaging instructions for fixed-point filtering is faster than existing methods while
avoiding some of their drawbacks. Here we bilinearly upsample the small antialised circle on the le� by a
factor of two, three times, which involves repeated use of a fixed-point 1 3 3 9 kernel. This computational
pa�ern shows up in pyramid-based algorithms. The circle is five intensity levels darker than the background,
with the output rescaled for display. From le� to right in order of cost: Input, upsampled using nearest
neighbor; Our method, which chains together sequences of ubiquitous but seldom-used averaging instructions
to produce an unbiased result; Round ties up, which is common practice when performance is critical, but can
cause color artifacts in shadows as it adds a uniform bias to all color channels; Round ties to even, which is
unbiased but accentuates banding artifacts because the even-valued bands are wider than the odd-valued
bands; Dithering, which is excellent if done once at the end of an imaging pipeline, but is a poor choice for
intermediate stages, as it introduces false structure. The throughput of each method was measured on a
single core of an Intel i9-9960X and an Apple M1 Max. For this filter, our method is 60-70% faster than the
next-fastest alternative.

Production imaging pipelines commonly operate using �xed-point arithmetic, and within these pipelines a
core primitive is convolution by small �lters – taking convex combinations of �xed-point values in order to
resample, interpolate, or denoise. We describe a new way to compute unbiased convex combinations of �xed-
point values using sequences of averaging instructions, which exist on all popular CPU and DSP architectures
but are seldom used. For a variety of popular kernels, our averaging trees have higher performance and higher
quality than existing standard practice.

CCS Concepts: • Computing methodologies ! Image processing.
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Fig. 1. Using trees of averaging instructions for fixed-point filtering is faster than existing methods while
avoiding some of their drawbacks. Here we bilinearly upsample the small antialised circle on the left by a
factor of two, three times, which involves repeated use of a fixed-point [1 3 3 9] kernel. This computational
pattern shows up in pyramid-based algorithms. The circle is five intensity levels darker than the background,
with the output rescaled for display. From left to right in order of cost: Input, upsampled using nearest
neighbor; Our method, which chains together sequences of ubiquitous but seldom-used averaging instructions
to produce an unbiased result; Round ties up, which is common practice when performance is critical, but can
cause color artifacts in shadows as it adds a uniform bias to all color channels; Round ties to even, which is
unbiased but accentuates banding artifacts because the even-valued bands are wider than the odd-valued
bands; Dithering, which is excellent if done once at the end of an imaging pipeline, but is a poor choice for
intermediate stages, as it introduces false structure. The throughput of each method was measured on a
single core of an Intel i9-9960X and an Apple M1 Max. For this filter, our method is 60-70% faster than the
next-fastest alternative.

Production imaging pipelines commonly operate using fixed-point arithmetic, and within these pipelines a
core primitive is convolution by small filters – taking convex combinations of fixed-point values in order to
resample, interpolate, or denoise. We describe a new way to compute unbiased convex combinations of fixed-
point values using sequences of averaging instructions, which exist on all popular CPU and DSP architectures
but are seldom used. For a variety of popular kernels, our averaging trees have higher performance and higher
quality than existing standard practice.
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1 FIXED-POINT FILTERING
Most photographs and videos are produced by imaging pipelines that operate using fixed-point
arithmetic. Indeed, in a raw camera pipeline, nearly everything from demosaicking the Bayer sensor
data to compressing the final JPEG is done using fixed-point math (e.g. [Hasinoff et al. 2016] [Adobe
2021]). Within these pipelines, perhaps the most common operation is filtering — taking a weighted
combination of pixel values.

When implementing such a filtering operation with fixed-point coefficients, the standard ap-
proach is to use integer multiply-add instructions, which grows the range of the intermediate result
by the sum of the coefficients. This requires either using larger data types for the computations
that follow to accommodate the added range, or scaling (or normalizing) the data back down to the
original range. Coefficients are often chosen to sum to a power of 2, so that this normalization can
be performed using a right shift instruction instead of division.1 This scaling operation requires
some form of rounding, which can introduce bias (the image may become brighter or darker on
average) and error (the result of the operation is not exact).2 The optimal bias is zero, and the
smallest peak error we can expect from any operation rounding to integers is 1/2.

The simplest rounding operation is truncating the remainder, which has a consistent bias towards
zero, and an error approaching one. A widely-used superior alternative is rounding to the nearest
integer with ties rounding up. This operation is commonly supported by instruction sets intended
for signal processing, such as the rshrn ARM NEON instruction. This has less bias than simple
truncation, but it still has a bias of +1/2 in the range prior to normalization, because ties are always
rounded up. Rounding ties to nearest even avoids the bias of the simple rounding, but produces an
uneven distribution of values, and requires more instructions to implement on most architectures.
Dithering is a more complex scheme where noise with a mean of 1/2 in the post-normalization range
is added to the data prior to truncation. Generating suitable blue noise for dithering is non-trivial
(see [Ulichney 1988]), requires more instructions to implement on most architectures, and occupies
some portion of the cache hierarchy with a noise table.

2 AVERAGING TREES
All currently-popular CPU and DSP instruction sets include integer averaging instructions. These
come in a rounding-down variant that computes ⌊ 𝑎+𝑏2 ⌋, and a rounding-up variant that com-
putes ⌈𝑎+𝑏2 ⌉. Both variants exist on ARM3, Hexagon4, and most DSP architectures. X86 includes
the rounding-up variant only5, though the rounding-down variant can be emulated with four
instructions [Dietz 2021].

For any kernel with coefficients that sum to a power of two, it is straightforward to construct
an averaging tree that implements normalized convolution by this kernel. For a kernel that sums
to 2𝑛 , construct a balanced binary tree of averaging operations of depth 𝑛, and assign each input
to a number of leaf nodes corresponding to its coefficient. After collapsing all inner nodes that
average a value with itself and deduplicating identical sub-trees, these trees will typically use fewer
1A widely-used exemplar of this approach can be found in libjpeg-turbo[2021].
2Formally, we define bias as the mean difference between the rounded result and the unrounded real-valued result over all
possible inputs, and peak error as the maximum absolute difference.
3hadd, rhadd instructions
4vavg, vavg:rnd instructions [Qualcomm 2018]
5pavgb, pavgw instructions
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Fig. 2. Some averaging trees that implement common filters used for various tasks in imaging. The trees
have been simplified into their minimal graph form (Fig. 4). Each rectangle corresponds to an input tap with
the given kernel coe�icient. Circles represent fixed-point averaging operations, with the rounding direction
given by the arrow within. On most platforms each of these is a single machine instruction. The doubled
circle is the output. Using these sequences of averaging operations for the tasks listed is typically superior to
existing standard practice in terms of speed, bias, and error (see Table 1). All trees pictured have zero bias and
minimum error.

Surprisingly, for many frequently-used kernels (Figure 2), trees exist that have the minimum
peak absolute error of 1/2 and zero bias. All such trees we have found are simultaneously the fastest
and the highest-quality way to perform these �lters, and should be used in every case.

For other kernels, we cannot provide averaging trees with minimum peak error, but we can still
provide kernels with zero bias, which is more important in some applications. Bias often manifests
as low frequency color artifacts (Figure 3), while a little extra error is usually not visible.

2.1 Averaging Tree Generation
We generate the averaging trees shown in this paper in two ways. These algorithms are run once,
o�ine.

Algorithm 1. To construct an averaging tree for a given kernel, place each input at the leaves of
a balanced binary tree a number of times corresponding to its coe�cient. The inner nodes of the
tree represent averaging operations. There are a combinatorially-large number of ways to choose
which leaves correspond to which inputs, and what rounding direction to use for the averaging
operations. For each of these, exhaustively measure bias and error over all possible =-bit inputs
for maximum tree depth =. If no optimal tree is found, double all coe�cients in the kernel, which
deepens the tree by one layer, and start again. Finally, simplify the generated tree into a directed
graph by deduplicating identical nodes and collapsing nodes that average a value with itself. The
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Fig. 2. Some averaging trees that implement common filters used for various tasks in imaging. The trees
have been simplified into their minimal graph form (Fig. 4). Each rectangle corresponds to an input tap with
the given kernel coefficient. Circles represent fixed-point averaging operations, with the rounding direction
given by the arrow within. On most platforms each of these is a single machine instruction. The doubled
circle is the output. Using these sequences of averaging operations for the tasks listed is typically superior to
existing standard practice in terms of speed, bias, and error (see Table 1). All trees pictured have zero bias and
minimum error.

instructions than other rounding modes (Table 1). Unfortunately, there is a combinatorially-large
number of such trees, and most of them have worse bias and error than other rounding modes.

Surprisingly, for many frequently-used kernels (Figure 2), trees exist that have the minimum
peak absolute error of 1/2 and zero bias. All such trees we have found are simultaneously the fastest
and the highest-quality way to perform these filters, and should be used in every case.

For other kernels, we cannot provide averaging trees with minimum peak error, but we can still
provide kernels with zero bias, which is more important in some applications. Bias often manifests
as low frequency color artifacts (Figure 3), while a little extra error is usually not visible.

2.1 Averaging Tree Generation
We generate the averaging trees shown in this paper in two ways. These algorithms are run once,
offline.

Algorithm 1. To construct an averaging tree for a given kernel, place each input at the leaves of
a balanced binary tree a number of times corresponding to its coefficient. The inner nodes of the
tree represent averaging operations. There are a combinatorially-large number of ways to choose
which leaves correspond to which inputs, and what rounding direction to use for the averaging
operations. For each of these, exhaustively measure bias and error over all possible 𝑛-bit inputs
for maximum tree depth 𝑛. If no optimal tree is found, double all coefficients in the kernel, which
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Fig. 3. Using averaging trees improves performance and reduces color artifacts caused by bias. On the top
left we show a photograph from Google’s HDR+ camera pipeline [Hasinoff et al. 2016] used in Pixel phones.
On the bottom left is the pipeline’s output cropped to the indicated region and brightened. Chrominance
noise is biased towards purple, and low-frequency purplish blobs are present on these ideally-gray granite
boulders. Bias in filtering operations translates into chrominance error because it moves the effective black
level of the image, and operations that scale color channels (e.g. lens shading correction or white balance) are
sensitive to the precise black level. On the bottom right is the output after replacing 59 different filtering
operations with the averaging trees in this paper. On the top right is the difference between the two. Using
averaging trees, chroma artifacts are reduced, and the pipeline stages affected run 11% faster.
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Fig. 3. Using averaging trees improves performance and reduces color artifacts caused by bias. On the top
le� we show a photograph from a major commercial camera pipeline (anonymous for review). On the bo�om
le� is the pipeline’s output cropped to the indicated region and brightened. Chrominance noise is biased
towards purple, and low-frequency purplish blobs are present on these ideally-gray granite boulders. Bias in
filtering operations translates into chrominance error because it moves the e�ective black level of the image,
and operations that scale color channels (e.g. lens shading correction or white balance) are sensitive to the
precise black level. On the bo�om right is the output a�er replacing 59 di�erent filtering operations with
the averaging trees in this paper. On the top right is the di�erence between the two. Using averaging trees,
chroma artifacts are reduced, and the pipeline stages a�ected run 11% faster.
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Fig. 4. The output of Algorithm 1 applied to the [1 1] kernel, with inputs [A B]. Two doublings occurred to
arrive at the operation (4� + 4⌫)/8. On the right, we simplify the tree into a graph by collapsing nodes that
average a value with itself (the circled le�ers), and deduplicating common subtrees (the dashed line). On
most architectures, this graph computes an unbiased average in four instructions.
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Fig. 4. The output of Algorithm 1 applied to the [1 1] kernel, with inputs [A B]. Two doublings occurred to
arrive at the operation (4𝐴 + 4𝐵)/8. On the right, we simplify the tree into a graph by collapsing nodes that
average a value with itself (the circled letters), and deduplicating common subtrees (the dashed line). On
most architectures, this graph computes an unbiased average in four instructions.
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Kernel Method Error Bias ARM ops ARM cycles x86 ops x86 cycles

1 1

Averaging tree 1/2 0 4 1.2 10 5.1
Round up 1/2 1/4 1∗ 1.2 1∗ 2.7

Round to even 1/2 0 10 2.5 18 8.2
Dither 1/2 0 8 3.0 18 11.2

1 2 1

Averaging tree 1/2 0 3 1.5 6 4.6
Round up 1/2 1/8 8 2.1 24 10.3

Round to even 1/2 0 18 4.6 26 13.2
Dither 3/4 0 12 3.7 24 13.2

1 1 1 1

Averaging tree 1/2 0 3 1.7 6 4.8
Round up 1/2 1/8 8 2.2 26 12.1

Round to even 1/2 0 18 4.6 28 12.2
Dither 3/4 0 12 3.8 26 15.2

1 3 3 1

Averaging tree 1/2 0 5 1.9 12 5.8
Round up 1/2 1/16 10 2.6 28 13.8

Round to even 1/2 0 18 4.6 30 14.6
Dither 7/8 0 14 4.1 28 15.2

1 3

Averaging tree 1/2 0 6 1.6 15 6.5
Round up 1/2 1/8 6 1.7 20 10.5

Round to even 1/2 0 16 4.0 22 11.5
Dither 3/4 0 10 3.3 20 11.3

1 3 3 9

Averaging tree 1/2 0 6 1.7 12 5.6
Round up 1/2 1/32 10 2.6 30 15.8

Round to even 1/2 0 18 4.6 32 16.4
Dither 15/16 0 14 4.1 30 16.1

1 4 6 4 1

Averaging tree 1/2 0 11 2.9 26 10.2
Round up 1/2 1/32 12 3.6 36 17.6

Round to even 1/2 0 22 5.2 38 16.6
Dither 15/16 0 18 4.7 36 17.6

Table 1. Averaging trees have minimum bias, minimum peak error, and use the fewest instructions on ARM
and x86 (using AVX2) for these popular kernels. Instruction counts are for computing a single native-width
SIMD vector of output, and include only SIMD arithmetic instructions. Cycles are also per-SIMD vector and
are measured by repeatedly filtering an array of 217 16-bit integers on a single core of an Apple M1 Max at
3.2 GHz and an Intel i9-9960X at 3 GHz for ARM and x86 respectively. The fastest method in each category
is highlighted in blue. There is no average-rounding-down instruction on x86 (it must be emulated with a
four-instruction sequence [Dietz 2021]), but x86 also lacks widening multiply-adds and rounding shifts, so it
requires more instructions than ARM in every case. Note, however, that a SIMD vector on x86 with AVX2 is
twice as wide as on ARM, so the performance difference between the platforms is not as large as it would
appear. ∗In this case the compiler (Halide [2012]) knew to use the averaging-round-up instruction already,
making this a degenerate averaging tree.

deepens the tree by one layer, and start again. Finally, simplify the generated tree into a directed
graph by deduplicating identical nodes and collapsing nodes that average a value with itself. The
algorithm terminates at the first optimal tree found, so we order the search so that round-ties-up
averages come before round-ties-down averages, as rounding up is cheaper on x86.
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b
a 0 1 2 3
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Round up

b
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0 0 0 1 2
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Fig. 5. All possible outputs for a [1 1] kernel, which simply averages two values 0 and 1. See Figure 2 top le�
for the averaging tree used for our method. The inputs have mean 1.5, so the mean of the average should
also be 1.5. Round-up has a mean output of 1.75, representing a positive bias of 0.25. Round-to-even has the
correct mean output, but 0 and 2 are over-represented. Our method alternates rounding direction along the
o�-diagonals. While it is no longer commutative, it has the correct mean and a balanced distribution.

inputs to leaf nodes in this example - either the two instances of B are together, as in ((⌫,⌫), (�,⇠))
or they are not, as in ((�,⌫), (⌫,⇠)). For each of these choices, we consider all combinations of
rounding directions for the three inner nodes. Each node can round in two possible directions, so
combined with the two choices for assignment of inputs to leaves, there are 16 trees to evaluate. For
each of these we evaluate the trees on all possible two-bit values for A, B, and C, which amounts
to 64 test cases per tree. The test cases are evaluated in parallel using Halide [2012], which helps
scalability for larger trees. The [1 2 1] tree shown in Figure 2 is optimal, so the search terminates
when it is found. If we had not found an optimal tree, we would have constructed a balanced binary
tree with eight leaves, assigned four of them to B, and two each to A and C, e�ectively treating our
[1 2 1] kernel as a [2 4 2] kernel instead. This doubling occurs twice for the [1 1] �lter, as illustrated
in Figure 4.

For a tree of depth =, there are$ (2=) inner nodes, and$ (22= ) possible combinations of rounding
directions to consider for them. Thus, increasing = by one squares the amount of work done by our
exhaustive search. At = = 4 (i.e. kernels that sum to 16) �nding a solution may take several hours.
At = = 5 (kernels that sum to 32) the method becomes intractable. Unfortunately, the minimum
tree depth for which the common [1 4 6 4 1] �lter has an unbiased form is 5. To �nd our solution
we instead enumerated pairs of biased depth-4 [1 4 6 4 1] trees, and tested the average of each pair
for bias and error. We were fortunate enough to �nd an optimal tree within this small subspace of
all depth-5 trees. This created the symmetric structure seen in the bottom right of Figure 2.

Algorithm 2. In addition to a method for �nding trees for a speci�c kernel, we would like a list
of which kernels can be implemented with an averaging tree with zero bias and minimum error.
This is useful in situations where there is some �exibility in which kernel is to be used. Our second,
simpler method for generating averaging trees is to enumerate all averaging DAGs up to a �xed
size. For each, we recursively compute which kernel it corresponds to. The kernel for an input
node is a delta function, and the kernel for an averaging node is the average of the kernels of its
children. We then exhaustively compute bias and peak error to �nd the ones with zero bias and
minimum error.

For both algorithms, we compute bias and error by enumerating all possible inputs. For an
input that occurs in the averaging tree at some maximum depth : , only the least signi�cant :
bits can possibly in�uence the rounding direction of the output. We therefore consider all :-bit
unsigned integers for that input, and take the Cartesian product of these sets over all inputs. Bias is
computed as the mean di�erence between the real-valued unrounded result and the output of the
averaging tree over this set, and error is computed as the maximum absolute di�erence between
the unrounded result and the output.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: June 2022.

Fig. 5. All possible outputs for a [1 1] kernel, which simply averages two values 𝑎 and 𝑏. See Figure 2 top left
for the averaging tree used for our method. The inputs have mean 1.5, so the mean of the average should
also be 1.5. Round-up has a mean output of 1.75, representing a positive bias of 0.25. Round-to-even has the
correct mean output, but 0 and 2 are over-represented. Our method alternates rounding direction along the
off-diagonals. While it is no longer commutative, it has the correct mean and a balanced distribution.

To give a worked example, consider a [1 2 1] filter applied to inputs A, B, C. The kernel sums to
four, so we first construct a balanced binary tree with four leaves, and assign two of those leaves to
B, and the other two to A and C. The three inner nodes of the tree represent averaging operations.
Averaging operations are commutative, so there are only two meaningfully-different ways to assign
inputs to leaf nodes in this example - either the two instances of B are together, as in ((𝐵, 𝐵), (𝐴,𝐶))
or they are not, as in ((𝐴, 𝐵), (𝐵,𝐶)). For each of these choices, we consider all combinations of
rounding directions for the three inner nodes. Each node can round in two possible directions, so
combined with the two choices for assignment of inputs to leaves, there are 16 trees to evaluate. For
each of these we evaluate the trees on all possible two-bit values for A, B, and C, which amounts
to 64 test cases per tree. The test cases are evaluated in parallel using Halide [2012], which helps
scalability for larger trees. The [1 2 1] tree shown in Figure 2 is optimal, so the search terminates
when it is found. If we had not found an optimal tree, we would have constructed a balanced binary
tree with eight leaves, assigned four of them to B, and two each to A and C, effectively treating our
[1 2 1] kernel as a [2 4 2] kernel instead. This doubling occurs twice for the [1 1] filter, as illustrated
in Figure 4.

For a tree of depth 𝑛, there are𝑂 (2𝑛) inner nodes, and𝑂 (22𝑛 ) possible combinations of rounding
directions to consider for them. Thus, increasing 𝑛 by one squares the amount of work done by our
exhaustive search. At 𝑛 = 4 (i.e. kernels that sum to 16) finding a solution may take several hours.
At 𝑛 = 5 (kernels that sum to 32) the method becomes intractable. Unfortunately, the minimum
tree depth for which the common [1 4 6 4 1] filter has an unbiased form is 5. To find our solution
we instead enumerated pairs of biased depth-4 [1 4 6 4 1] trees, and tested the average of each pair
for bias and error. We were fortunate enough to find an optimal tree within this small subspace of
all depth-5 trees. This created the symmetric structure seen in the bottom right of Figure 2.

Algorithm 2. In addition to a method for finding trees for a specific kernel, we would like a list
of which kernels can be implemented with an averaging tree with zero bias and minimum error.
This is useful in situations where there is some flexibility in which kernel is to be used. Our second,
simpler method for generating averaging trees is to enumerate all averaging DAGs up to a fixed
size. For each, we recursively compute which kernel it corresponds to. The kernel for an input
node is a delta function, and the kernel for an averaging node is the average of the kernels of its
children. We then exhaustively compute bias and peak error to find the ones with zero bias and
minimum error.
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For both algorithms, we compute bias and error by enumerating all possible inputs, as described
above. Bias is computed as the mean difference between the real-valued unrounded result and
the output of the averaging tree over this set, and error is computed as the maximum absolute
difference between the unrounded result and the output.

Code for both of these methods and the list of averaging trees produced can be found in supple-
mental material.

3 EVALUATION
We evaluate the performance of our averaging trees on the task of computing a dense 1D filter of
an array of 217 16-bit unsigned integers. This is sized to fit in L2 cache. In each case we manually
count the number of arithmetic instructions in the inner loop, and also measure the number of
cycles required to compute a single native-width SIMD vector of output. We compare to three
conventional methods for computing these filters: rounding up, rounding to nearest even, and
dithering. Results are in Table 1. Performance was measured on a single core of an Intel i9-9960X
pinned to 3 GHz with hyperthreading disabled, and the performance core of an Apple M1 Max at
3.2 GHz.

The three baseline methods all use substantially more cycles and instructions than our averaging
trees. The main cause is that these methods must start by widening the inputs to 32-bit unsigned
integers to avoid overflow in the multiply-adds that follow. On a fixed-bit-width SIMD machine,
using a wider intermediate type doubles the number of instructions required, as each instruction
only handles half as many values.

We also evaluate our averaging trees with the iterated upsampling test in Figure 1. One way
to bilinearly upsample an image by a factor of two is to apply all rotations of a square [1 3; 3 9]
filter to each overlapping 2x2 tile of the input, to produce non-overlapping 2x2 tiles of output. Our
method is the fastest, and avoids the artifacts caused by the other unbiased methods.

4 RELATED WORK
Most work in graphics pays little attention to which specific instructions are used. A few exceptions
are recent fixed-point camera pipelines [Hasinoff et al. 2016], quantized simulators [Hu et al. 2021],
quantized neural networks [Thomas et al. 2020], and median filters [Adams 2021], all of which
demonstrate performance benefits by exploiting low-bit-width data types and instructions.

Our method performs an exhaustive search for unbiased averaging trees, making it an instance of
enumerative program synthesis. Program synthesis has been used recently in graphics to translate
legacy fixed-point imaging code to Halide [Ahmad et al. 2019]. The most popular approaches to
program synthesis reduce the problem to a series of SAT or SMT queries and use a general purpose
solver to find a program that produces the correct output. While it is straight-forward to map the
problem of finding an averaging tree to a SAT query, we found that this scaled worse than our
bespoke enumerative search.

When averaging trees are used in fast imaging code in the wild, they are treated as inexact
relative to some ground truth rounding mode [Abel et al. 1999], or are modified with bit tricks
to make them exactly match rounding ties up, intentionally introducing bias (see libwebp [2011]
and libvpx [2017]). In contrast, libjpeg-turbo [2021] uses a conventional series of widening integer
multiply adds to implement similar filters, rounding ties up on even x coordinates and rounding
them down on odd x coordinates in a form of simple dithering. These three heavily-used libraries
would be faster and produce higher quality output if they used one of our averaging trees, which
do exist for the filters used.
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5 CONCLUSION
Using averaging trees for fixed-point filtering is faster, less biased, has optimal worst case error,
and maintains a more uniform distribution of output values than the existing standard practice.
Making this seemingly minor change has meaningful effects on performance and quality. We took
Google’s HDR+ camera pipeline [Hasinoff et al. 2016], used in Pixel phones, and converted 59
different filtering operations to the averaging trees in this paper. This resulted in an 11% speed-up
in local tone-mapping and sharpening, and visibly reduced color artifacts in shadows (Figure 3).

A challenge in using our method is that an averaging tree does not always exist for a given kernel.
For now, the set of known kernels is limited to what could be found with brute-force enumeration,
so trees for large kernels may be intractably difficult to find, if they even exist. Our method also
requires the coefficients to sum to a power of two, and is inapplicable to kernels with negative
coefficients, which are commonly used but no longer represent a convex combination of the inputs.
Overcoming these limitations is an interesting area of future work.

Another possible issue is that our method can produce trees that produce different results when
inputs corresponding to the same coefficient are permuted. For example, our unbiased averaging
tree for a [1 1] kernel is not commutative, as shown in Figure 5. If this is undesirable it can be
ameliorated by flipping the kernel at even/odd pixels at the cost of a few extra instructions.

Despite these limitations, and somewhat to our surprise, we find that the most commonly-used
kernels do admit optimal averaging trees, and we claim that our averaging trees should be used
whenever these kernels arise.
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